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Life Is Work 

 Living cells require energy from outside sources 

 Some animals, such as the giraffe, obtain energy by 

eating plants, and some animals feed on other 

organisms that eat plants 
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Figure 7.1 
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 Energy flows into an ecosystem as sunlight and 

leaves as heat 

 Photosynthesis generates O2 and organic 

molecules, which are used as fuel for cellular 

respiration 

 Cells use chemical energy stored in organic 

molecules to regenerate ATP, which powers work 
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Animation: Carbon Cycle 
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Figure 7.2 
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Concept 7.1: Catabolic pathways yield energy by 
oxidizing organic fuels 

 Catabolic pathways involving electron transfer are 

central processes to cellular respiration 
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Catabolic Pathways and Production of ATP 

 The breakdown of organic molecules is exergonic 

 Fermentation is a partial degradation of sugars that 

occurs without O2 

 Aerobic respiration consumes organic molecules 

and O2 and yields ATP 

 Anaerobic respiration is similar to aerobic 

respiration but consumes compounds other than O2 
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 Cellular respiration includes both aerobic and 

anaerobic processes but is often used to refer to 

aerobic respiration 

 Although carbohydrates, fats, and proteins are all 

consumed as fuel, it is helpful to trace cellular 

respiration with the sugar glucose 

C6H12O6 + 6 O2  6 CO2 + 6 H2O + Energy (ATP + heat) 
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Redox Reactions: Oxidation and Reduction 

 The transfer of electrons during chemical reactions 

releases energy stored in organic molecules 

 This released energy is ultimately used to 

synthesize ATP 
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The Principle of Redox 

 Chemical reactions that transfer electrons between 

reactants are called oxidation-reduction reactions, 

or redox reactions 

 In oxidation, a substance loses electrons, or is 

oxidized 

 In reduction, a substance gains electrons, or is 

reduced (the amount of positive charge is reduced) 

© 2016 Pearson Education, Inc. 



Figure 7.UN01 
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Figure 7.UN02 
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 The electron donor is called the reducing agent 

 The electron acceptor is called the oxidizing agent 

 Some redox reactions do not transfer electrons but 

change the electron sharing in covalent bonds 

 An example is the reaction between methane  

and O2 
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Figure 7.3 
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 Redox reactions that move electrons closer to 

electronegative atoms, like oxygen, release 

chemical energy that can be put to work 
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Oxidation of Organic Fuel Molecules During 
Cellular Respiration 

 During cellular respiration, fuel (such as glucose) is 

oxidized, and O2 is reduced 

 Organic molecules with an abundance of hydrogen, 

like carbohydrates and fats, are excellent fuels 

 As hydrogen (with its electron) is transferred to 

oxygen, energy is released that can be used in ATP 

synthesis 
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Figure 7.UN03 
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Stepwise Energy Harvest via NAD+ and the Electron 
Transport Chain 

 In cellular respiration, glucose and other organic 

molecules are broken down in a series of steps 

 Electrons from organic compounds are usually first 

transferred to NAD+, a coenzyme 

 As an electron acceptor, NAD+ functions as an 

oxidizing agent during cellular respiration 

 Each NADH (the reduced form of NAD+) represents 

stored energy that is tapped to synthesize ATP 
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 Enzymes called dehydrogenases facilitate the 

transfer of two electrons and one hydrogen ion to 

NAD+ 

 One hydrogen ion is released in this process 
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Figure 7.4 
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Figure 7.4-1 
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Figure 7.4-2 
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Figure 7.UN04 
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 NADH passes the electrons to the electron 

transport chain 

 Electrons are passed to increasingly 

electronegative carrier molecules down the chain 

through a series of redox reactions 

 Electron transfer to oxygen occurs in a series of 

energy-releasing steps instead of one explosive 

reaction 

 The energy yielded is used to regenerate ATP 
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Figure 7.5 
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The Stages of Cellular Respiration: A Preview 

 Harvesting of energy from glucose has three stages 

 Glycolysis breaks down glucose into two molecules 

of pyruvate in the cytosol 

 Pyruvate oxidation and the citric acid cycle 

completes the breakdown of glucose in the 

mitochondrial matrix 

 Oxidative phosphorylation accounts for most of the 

ATP synthesis and occurs in the inner membrane of 

the mitochondria 
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Figure 7.UN05 
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1.  GLYCOLYSIS (color-coded blue throughout the chapter) 
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Figure 7.6-s1 
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Figure 7.6-s2 
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Figure 7.6-s3 
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 Oxidative phosphorylation accounts for almost 90% 

of the ATP generated by cellular respiration 

 This process involves the transfer of inorganic 

phosphates to ADP  
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 A smaller amount of ATP is formed in glycolysis and 

the citric acid cycle by substrate-level 

phosphorylation 

 In this process, an enzyme transfers a phosphate 

group directly from a substrate molecule to ADP 
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 For each molecule of glucose degraded to CO2 and 

water by respiration, the cell makes up to 32 

molecules of ATP  
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Figure 7.7 
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Concept 7.2: Glycolysis harvests chemical energy by 
oxidizing glucose to pyruvate 

 Glycolysis (“sugar splitting”) breaks down glucose 
into two molecules of pyruvate 

 Glycolysis occurs in the cytoplasm and has two 

major phases 

 Energy investment phase 

 Energy payoff phase 

 The net energy yield is 2 ATP plus 2 NADH per 

glucose molecule 

 Glycolysis occurs whether or not O2 is present 
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Figure 7.UN06 
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Figure 7.8 
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Figure 7.9-1 
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Figure 7.9-1a-s1 
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Figure 7.9-1a-s2 
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Figure 7.9-1a-s3 
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Figure 7.9-1b-s1 
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Figure 7.9-1b-s2 
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Figure 7.9-1b-s3 
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Figure 7.9-2 
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Figure 7.9-2a-s1 
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Figure 7.9-2a-s2 
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Figure 7.9-2a-s3 
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Figure 7.9-2b-s1 
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Figure 7.9-2b-s2 
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Figure 7.9-2b-s3 
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Concept 7.3: After pyruvate is oxidized, the citric 
acid cycle completes the energy-yielding oxidation 
of organic molecules 

 In the presence of O2, pyruvate enters the 

mitochondrion (in eukaryotic cells), where the 

oxidation of glucose is completed 

 Before the citric acid cycle can begin, pyruvate must 

be converted to acetyl coenzyme A (acetyl CoA), 

which links glycolysis to the citric acid cycle 
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Figure 7.UN07 
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Figure 7.10 
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Figure 7.10-1 
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Figure 7.10-2 
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 The citric acid cycle, also called the Krebs cycle, 

completes the breakdown of pyruvate to CO2 

 The cycle oxidizes organic fuel derived from 

pyruvate, generating 1 ATP, 3 NADH, and 1 FADH2 

per turn 
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 The citric acid cycle has eight steps, each catalyzed 

by a specific enzyme 

 The acetyl group of acetyl CoA joins the cycle by 

combining with oxaloacetate, forming citrate 

 The next seven steps decompose the citrate back to 

oxaloacetate, making the process a cycle 

 The NADH and FADH2 produced by the cycle relay 

electrons extracted from food to the electron 

transport chain 
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© 2016 Pearson Education, Inc. 

GLYCOLYSIS 
PYRUVATE 
 OXIDATION 

CITRIC 
ACID 

CYCLE 

OXIDATIVE 
 PHOSPHORYL- 

 ATION 

ATP 



Figure 7.11-s1 
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Figure 7.11-s2 
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Figure 7.11-s3 
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Figure 7.11-s4 
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Figure 7.11-s5 
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Figure 7.11-s6 
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Figure 7.11-1 
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Figure 7.11-2 
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Figure 7.11-3 
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Figure 7.11-4 
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Concept 7.4: During oxidative phosphorylation, 
chemiosmosis couples electron transport to ATP 
synthesis 

 Following glycolysis and the citric acid cycle, NADH 

and FADH2 account for most of the energy 

extracted from food 

 These two electron carriers donate electrons to the 

electron transport chain, which powers ATP 

synthesis via oxidative phosphorylation 
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The Pathway of Electron Transport 

 The electron transport chain is located in the inner 

membrane (cristae) of the mitochondrion 

 Most of the chain’s components are proteins, which 
exist in multiprotein complexes 

 The carriers alternate reduced and oxidized states 

as they accept and donate electrons 

 Electrons drop in free energy as they go down the 

chain and are finally passed to O2, forming H2O 

© 2016 Pearson Education, Inc. 



 Electrons are transferred from NADH or FADH2 to 

the electron transport chain 

 Electrons are passed through a number of proteins 

including cytochromes (each with an iron atom)  

to O2 

 The electron transport chain generates no ATP 

directly 

 It breaks the large free-energy drop from food to O2 

into smaller steps that release energy in 

manageable amounts 
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Figure 7.12 
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Figure 7.12-1 
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Figure 7.12-2 

© 2016 Pearson Education, Inc. 

2 H+ + ½ 

30 

Electron transport 
chain 

20 

10 

0 
(most electronegative) 

Fe•S 

Cyt c1 

Cyt c 

Cyt a 

Cyt a3 

IV 

2 e 

O2 

H2O 

F
re

e
 e

n
e

rg
y

 (
G

) 
re

la
ti

v
e

 t
o

 O
2

 (
k

c
a

l/
m

o
l)

 



Chemiosmosis: The Energy-Coupling Mechanism 

 Electron transfer in the electron transport chain 

causes proteins to pump H+ from the mitochondrial 

matrix to the intermembrane space 

 H+ then moves back across the membrane, passing 

through the protein complex, ATP synthase  

 ATP synthase uses the exergonic flow of H+ to drive 

phosphorylation of ATP 

 This is an example of chemiosmosis, the use of 

energy in a H+ gradient to drive cellular work 
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Figure 7.13 
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Figure 7.13-1 
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Figure 7.13-2 
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(b) Computer model of ATP synthase 



 The energy stored in a H+ gradient across a 

membrane couples the redox reactions of the 

electron transport chain to ATP synthesis 

 The H+ gradient is referred to as a proton-motive 

force, emphasizing its capacity to do work 
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Figure 7.14 
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Figure 7.14-1 

© 2016 Pearson Education, Inc. 

Protein complex 
of electron 
carriers 

NADH 

(carrying electrons 
from food) 

Electron transport chain 

Q 

I 
III 

II 

IV 

H+ 
H+ 

Cyt c 

H+ 

FADH2 

NAD+ 

2 H+ + ½ H2O 
FAD 

O2 



Figure 7.14-2 
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An Accounting of ATP Production by Cellular 
Respiration 

 During cellular respiration, most energy flows in the 

following sequence:  

glucose  NADH  electron transport chain  proton-

motive force  ATP 

 About 34% of the energy in a glucose molecule is 

transferred to ATP during cellular respiration, 

making about 32 ATP 

 There are several reasons why the number of ATP 

molecules is not known exactly 
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Figure 7.15 
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Figure 7.15-1 
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Figure 7.15-2 
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Figure 7.15-3 
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Figure 7.15-4 
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Concept 7.5: Fermentation and anaerobic  
respiration enable cells to produce ATP without the 
use of oxygen 

 Most cellular respiration requires O2 to produce ATP 

 Without O2, the electron transport chain will cease 

to operate 

 In that case, glycolysis couples with fermentation or 

anaerobic respiration to produce ATP 
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 Anaerobic respiration uses an electron transport  

chain with a final electron acceptor other than O2, 

for example, sulfate 

 Fermentation uses substrate-level phosphorylation 

instead of an electron transport chain to generate 

ATP 
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Types of Fermentation 

 Fermentation consists of glycolysis plus reactions 

that regenerate NAD+, which can be reused by 

glycolysis 

 Two common types are alcohol fermentation and 

lactic acid fermentation 
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 In alcohol fermentation, pyruvate is converted to 

ethanol in two steps 

 The first step releases CO2 from pyruvate, and the 

second step reduces the resulting acetaldehyde to 

ethanol 

 Alcohol fermentation by yeast is used in brewing, 

winemaking, and baking 
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Animation: Fermentation Overview 
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Figure 7.16-1 
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 In lactic acid fermentation, pyruvate is reduced by 

NADH, forming lactate as an end product, with no 

release of CO2 

 Lactic acid fermentation by some fungi and bacteria 

is used to make cheese and yogurt 

 Human muscle cells use lactic acid fermentation to 

generate ATP when O2 is scarce 
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Figure 7.16-2 
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Comparing Fermentation with Anaerobic and 
Aerobic Respiration 

 All use glycolysis (net ATP = 2) to oxidize glucose  

and other organic fuels to pyruvate 

 In all three, NAD+ is the oxidizing agent that accepts 

electrons from food during glycolysis 

 The mechanism of NADH oxidation differs 

 In fermentation the final electron acceptor is an 

organic molecule such as pyruvate or acetaldehyde 

 Cellular respiration transfers electrons from NADH to 

a carrier molecule in the electron transport chain  
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 Cellular respiration produces about 32 ATP per 

glucose molecule; fermentation produces 2 ATP per 

glucose molecule  
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 Obligate anaerobes carry out only fermentation or 

anaerobic respiration and cannot survive in the 

presence of O2 

 Yeast and many bacteria are facultative 

anaerobes, meaning that they can survive using 

either fermentation or cellular respiration 

 In a facultative anaerobe, pyruvate is a fork in the 

metabolic road that leads to two alternative 

catabolic routes 
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Figure 7.17 
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The Evolutionary Significance of Glycolysis 

 Glycolysis is the most common metabolic pathway 

among organisms on Earth, indicating that it 

evolved early in the history of life 

 Early prokaryotes may have generated ATP 

exclusively through glycolysis due to the low oxygen 

content in the atmosphere  

 The location of glycolysis in the cytosol also 

indicates its ancient origins; eukaryotic cells with 

mitochondria evolved much later than prokaryotic 

cells 
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Concept 7.6: Glycolysis and the citric acid cycle 
connect to many other metabolic pathways 

 Glycolysis and the citric acid cycle are major 

intersections to various catabolic and anabolic 

pathways 
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The Versatility of Catabolism 

 Catabolic pathways funnel electrons from many 

kinds of organic molecules into cellular respiration 

 Glycolysis accepts a wide range of carbohydrates 

 Proteins must be digested to amino acids and 

amino groups must be removed before amino acids 

can feed glycolysis or the citric acid cycle 
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 Fats are digested to glycerol (used in glycolysis) 

and fatty acids 

 Fatty acids are broken down by beta oxidation and 

yield acetyl CoA 

 An oxidized gram of fat produces more than twice 

as much ATP as an oxidized gram of carbohydrate 

© 2016 Pearson Education, Inc. 
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Figure 7.18-s2 
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Figure 7.18-s3 
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Figure 7.18-s4 
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Figure 7.18-s5 
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Biosynthesis (Anabolic Pathways) 

 The body uses small molecules to build other 

substances 

 Some of these small molecules come directly from 

food; others can be produced during glycolysis or 

the citric acid cycle 
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Figure 7.UN10-1 
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Figure 7.UN12 
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Figure 7.UN13 
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Figure 7.UN14 
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Figure 7.UN15 
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Figure 7.UN16 
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