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Life Is Work

= Living cells require energy from outside sources

= Some animals, such as the giraffe, obtain energy by
eating plants, and some animals feed on other

organisms that eat plants
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Figure 7.1
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= Energy flows into an ecosystem as sunlight and
leaves as heat

= Photosynthesis generates O, and organic
molecules, which are used as fuel for cellular
respiration

= Cells use chemical energy stored in organic
molecules to regenerate ATP, which powers work
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Figure 7.2
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Concept 7.1: Catabolic pathways yield energy by
oxidizing organic fuels

= Catabolic pathways involving electron transfer are
central processes to cellular respiration
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Catabolic Pathways and Production of ATP

= The breakdown of organic molecules is exergonic

* Fermentation is a partial degradation of sugars that
occurs without O,

= Aerobic respiration consumes organic molecules
and O, and yields ATP

= Anaerobic respiration is similar to aerobic
respiration but consumes compounds other than O,

© 2016 Pearson Education, Inc.



= Cellular respiration includes both aerobic and
anaerobic processes but is often used to refer to
aerobic respiration

= Although carbohydrates, fats, and proteins are all
consumed as fuel, it is helpful to trace cellular
respiration with the sugar glucose

CgH{,06+6 O, > 6 CO, + 6 H,O + Energy (ATP + heat)
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Redox Reactions: Oxidation and Reduction

= The transfer of electrons during chemical reactions
releases energy stored in organic molecules

= This released energy is ultimately used to
synthesize ATP
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The Principle of Redox

= Chemical reactions that transfer electrons between
reactants are called oxidation-reduction reactions,
or redox reactions

= |n oxidation, a substance loses electrons, or is
oxidized

* In reduction, a substance gains electrons, or is
reduced (the amount of positive charge is reduced)
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Figure 7.UNO1
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Figure 7.UN02
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= The electron donor is called the reducing agent
= The electron acceptor is called the oxidizing agent

= Some redox reactions do not transfer electrons but
change the electron sharing in covalent bonds

= An example is the reaction between methane
and O,
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Figure 7.3
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= Redox reactions that move electrons closer to
electronegative atoms, like oxygen, release
chemical energy that can be put to work
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Oxidation of Organic Fuel Molecules During
Cellular Respiration

= During cellular respiration, fuel (such as glucose) is
oxidized, and O, is reduced

= Organic molecules with an abundance of hydrogen,
like carbohydrates and fats, are excellent fuels

= As hydrogen (with its electron) is transferred to
oxygen, energy is released that can be used in ATP
synthesis
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Figure 7.UNO3
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Stepwise Energy Harvest via NAD™ and the Electron
Transport Chain

= In cellular respiration, glucose and other organic
molecules are broken down in a series of steps

= Electrons from organic compounds are usually first
transferred to NAD*, a coenzyme

= As an electron acceptor, NAD* functions as an
oxidizing agent during cellular respiration

= Each NADH (the reduced form of NAD™) represents
stored energy that is tapped to synthesize ATP
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= Enzymes called dehydrogenases facilitate the
transfer of two electrons and one hydrogen ion to
NAD*

= One hydrogen ion is released in this process
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Figure 7.4
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Figure 7.4-1
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Figure 7.4-2
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Figure 7.UN0O4
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= NADH passes the electrons to the electron
transport chain

= Electrons are passed to increasingly
electronegative carrier molecules down the chain
through a series of redox reactions

= Electron transfer to oxygen occurs in a series of
energy-releasing steps instead of one explosive
reaction

= The energy yielded is used to regenerate ATP
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Figure 7.5
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The Stages of Cellular Respiration: A Preview

= Harvesting of energy from glucose has three stages

= Glycolysis breaks down glucose into two molecules
of pyruvate in the cytosol

= Pyruvate oxidation and the citric acid cycle
completes the breakdown of glucose in the
mitochondrial matrix

= Oxidative phosphorylation accounts for most of the
ATP synthesis and occurs in the inner membrane of
the mitochondria

© 2016 Pearson Education, Inc.



Figure 7.UNO5
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Figure 7.6-s1
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Figure 7.6-s3
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= Oxidative phosphorylation accounts for almost 90%
of the ATP generated by cellular respiration

= This process involves the transfer of inorganic
phosphates to ADP
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= A smaller amount of ATP is formed in glycolysis and

the citric acid cycle by substrate-level
phosphorylation

= In this process, an enzyme transfers a phosphate
group directly from a substrate molecule to ADP
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= For each molecule of glucose degraded to CO, and
water by respiration, the cell makes up to 32
molecules of ATP
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Figure 7.7
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Concept 7.2: Glycolysis harvests chemical energy by
oxidizing glucose to pyruvate

Glycolysis (“sugar splitting”) breaks down glucose
into two molecules of pyruvate

Glycolysis occurs in the cytoplasm and has two
major phases

= Energy investment phase
= Energy payoff phase

The net energy vield is 2 ATP plus 2 NADH per
glucose molecule

Glycolysis occurs whether or not O, is present
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Figure 7.9-1
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Figure 7.9-1a-s1
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Figure 7.9-1a-s2
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Figure 7.9-1a-s3
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Figure 7.9-1b-s1
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Figure 7.9-1b-s2
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Figure 7.9-1b-s3
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Figure 7.9-2
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Figure 7.9-2a-s1
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Figure 7.9-2a-s2
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Figure 7.9-2a-s3
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Figure 7.9-2b-s1
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Figure 7.9-2b-s2
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Figure 7.9-2b-s3
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Concept 7.3: After pyruvate is oxidized, the citric
acid cycle completes the energy-yielding oxidation
of organic molecules

= |n the presence of O,, pyruvate enters the
mitochondrion (in eukaryotic cells), where the

oxidation of glucose is completed
= Before the citric acid cycle can begin, pyruvate must

be converted to acetyl coenzyme A (acetyl CoA),
which links glycolysis to the citric acid cycle
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Figure 7.UNO7
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Figure 7.10
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Figure 7.10-1
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Figure 7.10-2
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= The citric acid cycle, also called the Krebs cycle,
completes the breakdown of pyruvate to CO,

= The cycle oxidizes organic fuel derived from

pyruvate, generating 1 ATP, 3 NADH, and 1 FADH,
per turn
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= The citric acid cycle has eight steps, each catalyzed
by a specific enzyme

= The acetyl group of acetyl CoA joins the cycle by
combining with oxaloacetate, forming citrate

= The next seven steps decompose the citrate back to
oxaloacetate, making the process a cycle

= The NADH and FADH, produced by the cycle relay
electrons extracted from food to the electron
transport chain
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Figure 7.UNO8
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Figure 7.11-s1
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Figure 7.11-s2
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Figure 7.11-s3
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Figure 7.11-s4
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Figure 7.11-s5

g

CHa

Acetyl CoA

CoA-SH

Coo™
H
HC—COO™
HO—CH
C00™
Isocitrate
NAD+

CITRIC
ACID
CYCLE

a-Ketoglutarate
=0

Succinate @,

GTP GDP Succinyl
CoA
ADP

© 2016 Pearson Education, Inc.



Figure 7.11-s6
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Figure 7.11-1
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Figure 7.11-2
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Figure 7.11-3
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Figure 7.11-4
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Concept 7.4: During oxidative phosphorylation,
chemiosmosis couples electron transport to ATP
synthesis

= Following glycolysis and the citric acid cycle, NADH
and FADH, account for most of the energy
extracted from food

= These two electron carriers donate electrons to the
electron transport chain, which powers ATP
synthesis via oxidative phosphorylation
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The Pathway of Electron Transport

= The electron transport chain is located in the inner
membrane (cristae) of the mitochondrion

= Most of the chain’s components are proteins, which
exist in multiprotein complexes

= The carriers alternate reduced and oxidized states
as they accept and donate electrons

= Electrons drop in free energy as they go down the
chain and are finally passed to O,, forming H,O
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= Electrons are transferred from NADH or FADH, to
the electron transport chain

= Electrons are passed through a number of proteins
including cytochromes (each with an iron atom)
to O,

= The electron transport chain generates no ATP
directly

= |t breaks the large free-energy drop from food to O,
into smaller steps that release energy Iin
manageable amounts
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Figure 7.12
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Figure 7.12-1
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Figure 7.12-2
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Chemiosmosis: The Energy-Coupling Mechanism

= Electron transfer in the electron transport chain
causes proteins to pump H*from the mitochondrial
matrix to the intermembrane space

= H+*then moves back across the membrane, passing
through the protein complex, ATP synthase

= ATP synthase uses the exergonic flow of H*to drive
phosphorylation of ATP

= This is an example of chemiosmosis, the use of
energy in a H* gradient to drive cellular work
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Figure 7.13
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Figure 7.13-1
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Figure 7.13-2
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= The energy stored in a H* gradient across a
membrane couples the redox reactions of the
electron transport chain to ATP synthesis

= The H* gradient is referred to as a proton-motive
force, emphasizing its capacity to do work
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Figure 7.14
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Figure 7.14-1
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An Accounting of ATP Production by Cellular
Respiration

= During cellular respiration, most energy flows in the
following sequence:

glucose - NADH — electron transport chain — proton-
motive force —» ATP

= About 34% of the energy in a glucose molecule is
transferred to ATP during cellular respiration,
making about 32 ATP

= There are several reasons why the number of ATP
molecules is not known exactly
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Figure 7.15
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Figure 7.15-1
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Figure 7.15-2
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Figure 7.15-3
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Figure 7.15-4

About

Maximum per glucose: 30 or32 ATP

© 2016 Pearson Education, Inc.



Concept 7.5: Fermentation and anaerobic
respiration enable cells to produce ATP without the

use of oxygen

= Most cellular respiration requires O, to produce ATP

= Without O,, the electron transport chain will cease
to operate

= |In that case, glycolysis couples with fermentation or
anaerobic respiration to produce ATP
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= Anaerobic respiration uses an electron transport

chain with a final electron acceptor other than O,,
for example, sulfate

= Fermentation uses substrate-level phosphorylation

instead of an electron transport chain to generate
ATP
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Types of Fermentation

= Fermentation consists of glycolysis plus reactions
that regenerate NAD*, which can be reused by

glycolysis
= Two common types are alcohol fermentation and
lactic acid fermentation
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= |n alcohol fermentation, pyruvate is converted to
ethanol in two steps

= The first step releases CO, from pyruvate, and the
second step reduces the resulting acetaldehyde to
ethano

= Alcohol fermentation by yeast is used in brewing,
winemaking, and baking
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Animation: Fermentation Overview
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Figure 7.16-1
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= |n lactic acid fermentation, pyruvate is reduced by
NADH, forming lactate as an end product, with no
release of CO,

= Lactic acid fermentation by some fungi and bacteria
IS used to make cheese and yogurt

= Human muscle cells use lactic acid fermentation to
generate ATP when O, is scarce
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Figure 7.16-2
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Figure 7.16
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Comparing Fermentation with Anaerobic and
Aerobic Respiration

= All use glycolysis (net ATP = 2) to oxidize glucose
and other organic fuels to pyruvate

= In all three, NAD" is the oxidizing agent that accepts
electrons from food during glycolysis

= The mechanism of NADH oxidation differs

= |n fermentation the final electron acceptor is an
organic molecule such as pyruvate or acetaldehyde

= Cellular respiration transfers electrons from NADH to
a carrier molecule in the electron transport chain
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= Cellular respiration produces about 32 ATP per
glucose molecule; fermentation produces 2 ATP per
glucose molecule
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= Obligate anaerobes carry out only fermentation or
anaerobic respiration and cannot survive in the
presence of O,

= Yeast and many bacteria are facultative
anaerobes, meaning that they can survive using
either fermentation or cellular respiration

= |n a facultative anaerobe, pyruvate is a fork in the
metabolic road that leads to two alternative
catabolic routes
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Figure 7.17
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The Evolutionary Significance of Glycolysis

= Glycolysis is the most common metabolic pathway
among organisms on Earth, indicating that it
evolved early in the history of life

= Early prokaryotes may have generated ATP
exclusively through glycolysis due to the low oxygen
content in the atmosphere

= The location of glycolysis in the cytosol also
indicates its ancient origins; eukaryotic cells with
mitochondria evolved much later than prokaryotic
cells
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Concept 7.6: Glycolysis and the citric acid cycle
connect to many other metabolic pathways

= Glycolysis and the citric acid cycle are major
iIntersections to various catabolic and anabolic
pathways
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The Versatility of Catabolism

= Catabolic pathways funnel electrons from many
kinds of organic molecules into cellular respiration

= Glycolysis accepts a wide range of carbohydrates

* Proteins must be digested to amino acids and
amino groups must be removed before amino acids
can feed glycolysis or the citric acid cycle
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* Fats are digested to glycerol (used in glycolysis)
and fatty acids

= Fatty acids are broken down by beta oxidation and
yield acetyl CoA

= An oxidized gram of fat produces more than twice
as much ATP as an oxidized gram of carbohydrate
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Figure 7.18-s1
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Figure 7.18-s2
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Figure 7.18-s3
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Figure 7.18-s4
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Figure 7.18-s5
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Biosynthesis (Anabolic Pathways)

= The body uses small molecules to build other
substances

= Some of these small molecules come directly from
food; others can be produced during glycolysis or
the citric acid cycle
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Figure 7.UN10-1
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Data from M. E. Harper and M. D. Brand, The quantitative contributions
of mitochondrial proton leak and ATP turnover reactions to the changed
respiration rates of hepatocytes from rats of different thyroid status, Journal
of Biological Chemistry 268:14850-14860 (1993).
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Figure 7.UN11
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Figure 7.UN12
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Figure 7.UN13
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Figure 7.UN14
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Figure 7.UN15
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Figure 7.UN16
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